Algebra II

8-7
Rational Root Theorem

Rational Root Theorem -

Fraction $\left.\xrightarrow\left[12,0^{6} 2,3\right\rfloor\right]{L^{62} 2,6} 34^{4}$
$P(x)=6 x^{3}-5 x^{2}+7 x-12$

Steps for solving Polynomials of Degree 3 or greater.

1) Identify the total number of solutions. (Biggest Power)
2) Descartes' rule of signs $+|-| \dot{\dot{c}}$
3) Rational Root Theorem (possible Q 's) <see last slide)
4) Begin looking for either Upper or Lower Bounds
5) Anytime a solution is found, use the quotient as the new dividend.
\longrightarrow zero remainder
6) Repeat steps 4 through 6 until both the Upper or Lower Bounds are both found. At any time the polynomial is quadratic, stop and use the methods for solving quadratics (factor, radical, quadratic formula)
7) Once done, try any remaining numbers from the Rational Root Theorem.
8) Round to tenths as a last resort.

$$
\begin{aligned}
& \operatorname{pg} 384 \\
& 2,4-8 a 11 \\
& 10,12,22-24 a 11
\end{aligned}
$$

